Space Newsfeed

Satellite Communications Technology

Human-machine interaction in space - first technology experiment using artificial intelligence on the ISS

(2 March 2018 - DLR) The Crew Interactive MObile companioN (CIMON) is able to see, hear, understand, speak – and fly. It is roughly spherical, has a diameter of 32 centimetres and weighs five kilograms.

From summer 2018, CIMON will become the new 'crew member' on the International Space Station (ISS), in order to demonstrate cooperation between humans and intelligent machines in the form of a technology experiment. The interactive astronaut assistant was developed and built by Airbus in Friedrichshafen and Bremen on behalf of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) Space Administration and funded by the German Federal Ministry for Economic Affairs and Energy (Bundesministerium für Wirtschaft und Energie; BMWi). Watson AI technology from the IBM Cloud provides voice-controlled artificial intelligence. The human aspects of the assistance system were co-developed and supervised by scientists at Ludwig-Maximilian University Hospital in Munich (Klinikum der Ludwig-Maximilians-Universität München, LMU). An approximately 50-strong DLR, Airbus, IBM and LMU project team has been working on implementing CIMON since August 2016. "CIMON is globally unique in this form," summarises Christian Karrasch, CIMON Project Manager at the DLR Space Administration in Bonn. "We have implemented this experiment in a very short time. It is intended to show to what extent the astronauts' work can be supported in the European Columbus module on the ISS and relieve them, in particular, of routine tasks. Ideally, the astronauts could use their time better and more effectively. With CIMON, we are entering new territory and operating at the threshold of technological feasibility."

human 1

CIMON can be seen on the left in the image during a WLAN communications test at the ESA European Astronaut Centre (EAC) in Cologne-Porz on 30 January 2018. People in the background, from left to right: Christian Karrasch, CIMON Project Manager at the DLR Space Administration; Till Eisenberg, CIMON project lead at Airbus Friedrichshafen; and Christoph Kossl, Airbus software systems engineer for CIMON. (courtesy: DLR, T Bourry, ESA)

human 2

Composite image of CIMON floating in the Columbus Public Relations Module at ESA’s European Astronaut Centre (EAC) in Cologne-Porz (30 January 2018). CIMON is a flying and autonomous astronaut assistant. Equipped with artificial intelligence, this unique technology demonstrator will support the work of astronauts on the ISS during German ESA astronaut Alexander Gerst’s Horizons mission in the summer of 2018. (courtesy: DLR, T Bourry, ESA)

human 3

Christian Karrasch, CIMON Project Manager at the DLR Space Administration, and Till Eisenberg, CIMON project lead at Airbus Friedrichshafen, hold CIMON in their hands in the Columbus module mock-up at the ESA European Astronaut Centre (EAC) in Cologne-Porz on 30 January 2018. CIMON is an innovative, globally unique astronaut assistance system. This autonomous flying system is equipped with artificial intelligence and will be used for the first time by German ESA astronaut Alexander Gerst during his ‘horizons’ mission in the summer of 2018. The DLR Space Administration awarded the CIMON project contract to Airbus, and the device was specially developed for use in the European Columbus module on the ISS. (courtesy: DLR, T Bourry, ESA)

Microgravity in parabolic flight

CIMON will enter microgravity on 9 March 2018 during the 31st DLR parabolic flight campaign in Bordeaux. In particular, orientation, navigation and steering will be tested, to ensure that it is optimally prepared for use on the ISS – in permanent microgravity. In June, CIMON will then travel to the ISS on board the US Space-X CRS-15 space transport mission, where it will be greeted by the German ESA astronaut Alexander Gerst.

Following a functional test, the German astronaut will perform three experiments with his artificial colleague. On the agenda are experiments with crystals and a Rubik’s cube, and a medical experiment in which CIMON will be used as a flying camera.

CIMON allows the astronaut to keep both hands free, with no need to manually operate a computer, for example. Thanks to this fully voice-controlled access to documents and media, the astronaut can conveniently navigate through operating and repair instructions and procedures for experiments and equipment. CIMON will thus serve as a complex database of all the necessary information for working on the ISS, and can also be used as a mobile camera for documentation purposes.

When making its space debut, however, the intelligent artificial assistant will not have all the capabilities envisaged by its developers: "In the medium-term, we want to concentrate on group effects that develop in small teams over a long period of time and can occur during long-term missions to the Moon and Mars. Social interaction between humans and machines, and between astronauts and emotionally intelligent flight attendants could play an important role in the success of these missions," explains Till Eisenberg, CIMON project lead at Airbus Friedrichshafen. The engineers are also interested in processing Big Data and data mining.

"The aim of the CIMON project is to examine the current capabilities of artificial intelligence in a complex environment such as the International Space Station, in order to provide the best possible support to people in such conditions," says Matthias Biniok, IBM's lead Watson architect in Germany, explaining their interest in the project. For example, CIMON uses Watson AI to process text, speech and images, find specific information and knowledge, and interpret moods and feelings. Biniok adds: "These skills can be individually trained and enhanced within the context of their respective application. Artificial intelligence also makes particular use of artificial neural networks."

Scientific background

CIMON also has a scientific background; its advisors are Judith-Irina Buchheim and Alexander Choukèr from the Department of Anaesthesiology at the Ludwig-Maximilian University Hospital in Munich. During a variety of research projects, Buchheim and Choukèr are investigating the effects of stress on the human immune system. "We not only examine patients in intensive care units, but also people exposed to extreme stress and workload as a result of their environment, such as polar explorers in the Antarctic and astronauts on the International Space Station," reports Buchheim, adding: "Our studies show that being subjected to microgravity for a certain period can significantly affect the functioning of an astronaut's immune system. Stress is a major factor here." For example, strenuous tasks that are performed with a colleague are generally less arduous when people work well together. "As a partner and assistant, CIMON could support astronauts with their high workload of experiments and maintenance and repair work, thereby reducing their exposure to stress." According to Buchheim, possible applications on Earth are the support of engineers, researchers and doctors, AI-based enquiries about medical symptoms and everyday assistance for elderly people living alone.